viernes, 5 de noviembre de 2010

LA PARÁBOLA


Parabola

Parábola


En matemática, la parábola es la sección cónica resultante de cortar un cono recto con un plano paralelo a sugeneratriz
Se define también como el lugar geométrico de los puntos que equidistan de una recta y un punto fijo llamado foco.
En geometría proyectiva, la parábola se define como la curva envolvente de las rectas que unen pares de puntos homólogos en unaproyectividad semejante o semejanza.
La parábola aparece en muchas ramas de las ciencias aplicadas, debido a que las gráficas de ecuaciones cuadráticas son parábolas. Por ejemplo, la trayectoria ideal del movimiento de los cuerpos bajo la influencia de la gravedad.

Ecuaciones de la Parabola


Con el advenimiento de la geometría analítica se inició un estudio de las formas geométricas basado en ecuaciones y coordenadas.
Una parábola cuyo vértice está en el origen y su eje coincide con el eje de las ordenadas, tiene una ecuación de la forma y=ax2 donde el parámetro a especifica la escala de la parábola, incorrectamente descrita como la forma de la parábola, ya que como se dijo antes, todas las parábolas tienen la misma forma. Cuando el parámetro es positivo, la parábola se abre «hacia arriba» y cuando es negativo se abre «hacia abajo».
Si bien, la expresión en forma de ecuación no fue posible hasta el desarrollo de la geometría analítica, la relación geométrica expresada en la ecuación anterior ya estaba presente en los trabajos de Apolonio,2 y se bosquejará a continuación usando notación moderna.
Tomando nuevamente la definición de parábola como sección de un cono recto de forma paralela a la directriz, sea V un punto en el eje y seaQV perpendicular al eje. (QV corresponde al valor x en la versión analítica y PV al valor y). Considerando la sección circular que pasa por Q y es paralela a la base del cono, obtenemos HK paralelos a B y C.
Por el teorema de potencia de un punto:
QV^2 = HV\cdot VK.
Al ser PM paralela a AC, los triángulos HVPHKA y BCA son semejantes y así:
\frac{HV}{PV} = \frac{HK}{KA}  = \frac{BC}{AC}.
Usando nuevamente los paralelismos:
\frac{VK}{PA} = \frac{HK}{HA} = \frac{BC}{BA}.
Despejando HV y VK para sustituir en la fórmula de QV² resulta en
QV^2=HV\cdot VK=\left(\frac{BC\cdot PV}{AC}\right)\left(\frac{BC\cdot PA}{BA}\right) = \left(\frac{BC^2\cdot PA}{BA\cdot AC}\right)PV.
Pero el valor de \left(\frac{BC^2\cdot PA}{BA\cdot AC}\right) es una constante pues no depende de la posición de V, por lo que haciendo
 a = \frac{BA\cdot AC}{BC^2\cdot PA},
arroja la expresión moderna y=ax².
Archivo:Parábolas centradas.svg



Archivo:Parábolas verticales.svg

Archivo:Ecuación de parábola vertical.svg

Aplicaciones Practicas

Una consecuencia de gran importancia es que la tangente refleja los rayos paralelos al eje de la parábola en dirección al foco. Las aplicaciones prácticas son muchas: las antenas satelitales y radiotelescopios aprovechan el principio concentrando señales recibidas desde un emisor lejano en un receptor colocado en la posición del foco.
La concentración de la radiación solar en un punto, mediante un reflector parabólico tiene su aplicación en pequeñas cocinas solares y grandes centrales captadoras de energía solar.
Análogamente, una fuente emisora situada en el foco, enviará un haz de rayos paralelos al eje: diversas lámparas y faros tienen espejos con superficies parabólicas reflectantes para poder enviar haces de luz paralelos emanados de una fuente en posición focal. Los rayos convergen o divergen si el emisor se desplaza de la posición focal.







No hay comentarios:

Publicar un comentario